
-‘a
AD—A068 900 WISCoN SIN LIII V—MADISON MATHEMATICS RESEARCH CENTER FIG 12/1

A NOTE ON EM$IERATING BINARY TREES.(U)
FEB ‘79 N SOLOMON. R A FINKEL DAAG29—75—C—0O2 14

WICLASSIF lED peC—TSR— 1926 NL

Is—I

__

E~~D
’

DATE
FILMED

onc

a

—~
—

— —— ~~~~~~~~~

~~~~~~~~~ 
‘
I

MRC Technical Summary Report #1926

A NOTE ON ENUMERATING BINARY TREES

~

‘ Marvin Solomon and Raphael A. Finkel

l a o

S

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street 0 0 C
Madison, Wisconsin 53706

February 1979

Received February 5, 1979

Approved for public release
Distribution unlimited

Spon sored by

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park
North Carolina 27709



UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

/ 7 ~ ~~~~~~~~..~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - • • •

~~ 

NOTE ON ENUMCR~T1NG BINARY TREES

. 7  
.—.— - ..— .

~ Marvin/ Solomon /
/ Raphael A . / F I n k e l

I Technical $‘ununary ~~~~~~~~~~~~
~1!e~~~a!~~ 1~79

ABSTRACT 
/

1 
2~~~~~ /

Gary Knott has presented algorithms for computing a bijection

between the set of binary trees on n nodes and an initial segment

of the positive Integers. Rotem and Varol presented a more com-

plicated algorithm that computes a different bijection, cla im ing

that their algorithm is more efficient and has advantages if a

sequence of several consecutive trees is required . We present a

L modification of Knott’s algorithm that is simpler than Knott’s

and as efficient as Rotem and Varol’s. We also give a new

linear—time algorithm for transform ing a tree into its successo r

in the natural ordering of binary trees.

Keywords and phrases: binary trees, permutations, generators,

enumeration , combinatorics , stack—sortable permutations

AZ4S (MOS ) Subject Classification: 05C30, 68AlO , 05A10, 68A20

Work Unit Nunbers 4 and 8: Probability , Statistics & Cc*nbinatorics and
Ccznputer Science

I
_

/i f\ 1 1i~~i’:-~~1~~J
_ _ _ _ _ _ _ _ _ _ _ _(I .~~~ I

Sponsorea by the United States Army under Contract’lI/~~ DA G29-!5-C~~~~4( Partial
support by the Research Cannittee of the Graduate Schàol ó!~ the University of
Wisconsin—Madison . .

~~~ —r
~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

—

~~~~~~~~~ 

—



significance and Explanation

We illustrate the mathematical problem discussed in this paper in terms

of one possible applicat ion , the storage and retrieval of information in

dig ital canputers by techniques that depend on a series of yes/no questions.

The binary tree is a structure that makes it easy to put information into,

and take information out of , a data base, using such a sequence of questions.

Given a certain amount of information , there will be many different

ways of representing this in the form of binary trees . The procedure de-

scribed in this report gives all possible ways of storing this information

in binary trees. Given one representation, it is possible to find the next

one in line. Any representation in the list can be generated without going

through all of them.
I

~o’
0%

~~~~~~~

~
_—1

~~~~~~~~~~~~ 
~~~~

__
_—

___.%

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the authors of this report.

~~~~~~~~~~~~~ . ~~~~~~~~~~~~ 
— - - -



-

A NOTE ON ENUMERATING BINARY TREES

Marvin Solomon and Raphael A. Finkel

I n t r o d u c tio n

Gary Knott has published algorithm s for comput ing a bijection

Rank from the set of binary trees wi th n nodes to an initial seg—

ment of the integers and for computing Rank~~ (1.]. His method

for computing Rank t involves generating certain permutations of

(1, 2, ..., n} called tree p~rmutations, which are in one to one

correspondence with the binary trees and from which the binary

trees may be easily constructed . Rotem and Varo]. propose an al-

ternative technique for generating the trees (2]. Instead of

constructing the tree permutations (which they call

stack—sortable permutations) directly, they construct the

invers ion tables of these pe rmuta t ions, which are sequences of

non—negative integers called ballot sequences. They show that

the ballot sequences may be generated in lexicographic order and

present a clever and efficient algorithm for converting the bal-

lot sequences into trees. In this note, we present modifications

of Knott’s algorithm s that map directly between trees and in-

tegers. In addition , we correct some misconceptions put forth by

Rotem and Varol , and present a new algorithm that transfo rms a

given tree to the next one in sequence.

In comparing their technique to Knott ’s, Rotem and Varol con-

cede that their method does not generate the trees in the “natur—

al” order , but claim two advantages: (1) They say their tech—

nique is more efficient , since it is well—known ” that the map—

ping of permut3tions to trees requires 0(n2) operations in the

worst case for trees wi th n nodes. In contrast , their method re-

quires only O(n log n) operations to create an n-node tree , pro—

Sponsored by the United States Army under Contract No. DMG29-75-C-0024. Partial
support by the Research Committee of the Graduate School of the University ~fWisconsin—Madison .

~ 

~r ~~~~~~~~~~~~~~~~ 
,

, ...~~~ ~~~~~~~~~~~~~~~~~~ ~ 1s~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



vid ed a table of n2 values has been precomputed . They also imply

a similar advantage for their calculation of Rank. (2) They

point out that a ballot sequence may be efficientl y generated

from the previous one and converted to a tree , yielding a tech—

nique for generating a sequence of trees. They claim that using

Knott’s method , “to generate k trees corresponding to consecutive

permutations would require the transformation of k indices, since

there is no simple way of deriving stack—sortable permutations in

their order corresponding to the natural order of trees” [1, p.

404].

With regard to the first claim , we point out that whereas the

mapping of an arbitrary permutation to the corresponding tree may

take 0(n2) operations, a tree permutation may be converted to a

tree in 0(n) operations, due to its special properties. Rather

than prove this result here, however , we present a modification

of Knott’s algorithm that translates directl y from indices to

trees.

With regard to the generation of sequences of trees, we show

how to transform a tree to the next one in the natur al order by

an algorithm that works directly on the tree and requires 0(n)

operations.

‘ I

Definitions

A binary tree T is either a nul l tree or consists of a node

called the root and two binary trees denoted Left(T) and

• 

. 

~~qht (T). In the fo rmer case , the size of T is zero ; in  the

latter case Size(T) = I + Size(Left(T)) + Size(Right(T)). We 

~ . I 

-2-

I l L  -
~ ~~~ - t diL ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— 

- - — 4



— .—,! - .,_ —,. --~~~~~r~~~ ,~~~- ---. - 
-.--.

~

-——.- ..~~~ . 
-
~~

- 
—

1:1

will often Identify a tree with its root.

Define a relation on trees by T1-<T2 if and only if one of

the following conditions holds:

Size(T1) < Size(T~)

or Size(T1) = Size (T2) and Left(T1
)< t.eft(T2)

or Size(T1) = Size(T2) andLeft(T1) L e f t( T 2 ) and Righ t (T 1)— < R i g h t ( T 2) .

This ordering is called the natural ordering of trees. Let {T1,

T2, . . .,  TB 
} be the sequence of all trees of size n, ordered by

n
the natural ordering . It is well known that Sn is the nth

Catalan number [3) : B~ = 

~
2
~~j~~t• 

Define Rank (T1) = I. Let

F ir s t ( n )  denote the tree T 1, depicted in Figure  1(a) . The predi—

[-i cate Last (T) is true If and only if T = TB , depicted in Figure

1(b) .

The Algorithms

In the Pascal [4] program presented in the appendix , a tree T

is represented by a pointer to a structure containing the two

trees Left (T) and Right(T) as well as Size(T). The size is pro—

vid ed for efficient implementation of Rank and Next.

The main program computes a table of Catalan numbers using
6B

• the recurrence cited by }~‘~~tt: B~ = 4B~_1 . It also coin—
I.

putes a table of other values which are used to speed up the cal—

culation of Rank and Ranklnverse as described below.

The procedure Next attempts to transfo rm T to the successor

of T in the natural ordering . Resul t is set to true if Next

succeeds or to false if Last (T) is true . The method comes

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. ;~~~~~~~~~~~~ T:I ~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


_ _ _ _ - ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
_ _ _ _ _ ____ -

directly from the definition of the natural order. The successor

of T may be formed by attempting first to transfo rm T’s right

subtree to its successor. If T’s right subtree has no successor ,
•

then it is reset to the first tree of its size and the left sub—

tree is transformed to its successor. If both the subtrees are

the last trees of their sizes, then one node is moved from the

right to the left and both subtrees are re—initialized .

Let T be a tree and let n = Size(T). A top—level call of

Next gives rise to at most one recursive call for each node of T ,

plus at most one call for each of the n — I. nu l l trees , at the

leaves. The amount of work in one call to Next, exclusive of em—

bedded calls to Next and to First is bounded by a constant. Each

call to First allocates a node of the new tree, so the total work

involved in calls to First is bounded by n. Thus Next(T) re—

quires at most 0(n) time, where n = Size(T).

The procedure Ranklnverse constructs the tree whose rank is I

by essentially the same counting argument as the one used by

Knott, Let Gkfl d.note the number of trees wi th n nodes whose

left subtree has k nodes.norder. As Knott points out ,

Gkfl — Bk ..t Bfl k. ‘Then the size of the left subtree of T~ is the

• largest integer r such that Sm ~~
G~~ < i. As Rotem and

ker
Varol point out, this value may be calculated quickly by precom—

puting som e values of
~~~~ and using binary search to find the 4

largest Sm less than i. The compl ex i ty of f i n d i n g  the root is

then 0(log r) < 0(log n ) .  The rest of Ranklnverse  calculates  the

ranks of the left and right subtrees as — Srn ) /kJ+ 1 and

( I  — S m ) mod k + 1, r e spec t i ve ly ,  w h e r e  k is  the size of the

_________________________________ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -


r• ~~~~~~~~~~ ~~~~ ~~~~~~
- •• — - ‘

~~~~~~~~~~
‘ ‘

~~~~
— .“ —“.—

~
— -

~
-‘

~
— -.-‘

~~~
-
~
- - -— — . 

~~~~~ ~~~~~~~~~~~~~~~~~ ~ , . _
‘- .__ _

4J_~
—

~-~~ •—‘.•—‘

right subtree. Therefore, the time devoted to one call of

Ranklnverse can be bounded by 0(log n), and since each call of

Ranklnverse generates one node of the resulting tree, the total

time is 0(n log n).

The procedure Rank(T) works by counting the number of trees

preceed ing T in the na tu ra l order ing . It d iv ides them into three

classes: tho se T’ for which S iz e (Lè f t (T ’)) < Size(Left(T)),

those for which Size(Left (T’)) — Size (Right(T)) but

L e f t (T ’) L e f t (T) , and those for which L e f t(T ’) — Left(T) but

~J. R i g h t (T ’) R i g ht (T) . The size of the f i r st class is just 5mn ’

4 where r is the inorder number of the root, and the other sizes

can be calculated in a constant amount of time, exclusive of me—

cursive calls. The procedure Rank is called once at each node of

the t ree. Hence , if the Sm numbers are precomputed , the running

time of Rank is bounded by 0(n).

Conc lus ions

We have presented straightfo rward and efficient algorithms

for computing the rank of a tree in the. natur al ordering of.

binary trees of a given size and for constructing the tree wi th a

given rank . We have also presented a new linear algorithm that

transforms a tree to its successor in the natural. ordering .

References

(1) Knot t , C. D. A number ing system for b ina ry t rees . Comm.

ACM 20 , 2 (Feb 1977), 113—115.

—5-..

~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~ ~.•~~~i- ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ‘~ ~~~~~~~~~~~


F~
-

~~

— -- - ——.
~~

—-
~

— —- . --‘———-——- — —. ——-—-- — — - -~. - - ‘ .:,., • -. ~~~~~~~~~~~ . . —.—‘
~

——— —

I
[23 Rotem , D. and Varol , Y. L. Genera t ion of b i n ar y t rees from

ballot sequences. 3. ACM. 25, 3 (July 1978), 396—404 .

(3] Knuth, D. E. The ~rt of Computer Programming, Vol 1:

Fundamental A lgo r i t hms . Addison—Wesley, Read ing , Mass.,

• 1 973.

(4] Jensen , K. and Wi r th , N. PASCAL User Manual and Report.

Springer Verlag , Berlin , 1974.

(a) (b)

Figure 1.
The first and last trees with n nodes •

II

-6-

• ~~~~~~~~~

- -

— .~~~A

‘ “
~~~~ 

‘

~~

“ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

— - -
~~~~~

~ppend~~

~~~~~ 

• type t r e e =4 ~ node ;
node =

record
left, right : tree ;
size : integer ; (* number of nodes in the tree *)

end ;

var n , k : integer ;
B : array (0 .. MA X] of integer ; (* Catalan numbers *)
S : a r r a y (0 .. MAX, 0 .. MAX] of integer ;

F (~ Sums of products of Catalan numbers *)

proced ure Initialize ;
(* Precompute the tables B and S *)
beg in

B(0J : 1;
for n 1 to MAX do
begin

a B (n] : 4 * B(n—l] — (6 * B (n — L]) div (n + 1) ;
S(0 ,n] : 0 ;
for k : 0 t o n — 1 do

S(k+l ,n] := S(k ,n] + B (k] * B E n — k — l I ;
V end ;

end (* procedure Initialize *);

func t ion F i r s t(n : in teger) : tree ;

,
(~ Genera te the f i r s t t ree hav ing h nodes *)
var Result : tree ;
begin

if n = 0 then F i r s t := ni l
else tegin

new(R esu l t) ;
w i t h Resul t”P do
beg in

size : n ;
l e f t : n i l ;
r i g h t := F i r s t(n — 1) ;

end ;
F i r s t := R e s u l t ;

end ;
end (* First *) ;

-7- ~~~~~~~~~~~~~~~~~

lii i ~~~~~~~~~~~~~~~~

-
_ _ _ _

- ~~~~~~~~~~~~~~~~~

L-.
proced ure Next(T : tree ; var Resul t : Boolean) ;
(* Change T to the next (i n the canonical o rde r ing) t ree

if possible. Report success or failure in Result. *)
label 99;
var

Ok : Boolean ;
Rs i ze : integer ;

begin
if T = nil then Resul t := false
else with TI’ do
begin

Next(right, Ok) ;
if r i gh t = ni l then Rs i ze := 0 else Rs i ze := r ightl ’.size ;
if not Ok then
begin

Next(left , Ok) ;
i f not Ok then

• begin
Rs i ze := Rs ize — 1 ;
if Rs i ze < 0 then
begin

Result := false ;
goto 99; (* return *)

end ;
l e f t := F i r s t (s i z e — Rsize — 1) ;

end ;
r igh t := F i r s t (R s i z e) ;

end ;
Result := true ;

end ;
99:
end (* Next *);

func t ion R a n k (T : tree) : integer ;
var Lsize, Lrank , Rsize, Rrank : integer ;
begin

if T — nil then Rank := 1
else wi th 11’ do
begin

if left nil then Lsize := 0 else Lsize : l e f t4 ’.size ;
Lrank := Rank(left) ;
if r i gh t = ni l then Rs i ze := 0 else Rs i ze := r ight’1.size;
Rrank := Rank(right) ;
Rank := B(Rs ize) * (L rank — 1) 4

+ Rrank
+ S (L size , s ize] ;

end ;
end (* Rank *) ;

4

.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . - . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘..

~~~~~~ -
~~~~~

‘-:
~~:~~~ 

~~~~~~~~ ‘ - • 

~~~~~~~~~~~~~~~~~~~~~~~



- , . ,  ‘ ‘ ‘‘ - ‘ . 
. . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—_—•‘-.- ‘~~~~~~~~ r•=”~s~—.a~ ‘ -‘- —‘ . ‘ - - — - - . ‘ —

r •
~~~~~~

-‘- 
~~~~~~~~~~~~~~~~~~ — — -----—-— -——~~~ 

., . - — —

~~ f u n c t i o n R a n kln v e r s e (i , n : In tege r) : tree ;
(* Return the tree whose rank is I among those wi th n nodes *)
var

Low , High , Center : in teger ; (* For binary search *)
Lsize, Rsize : integer ;
Resul t : t ree ;

beg in
if fl = 0 th(:J~ Ranklnverse : ni l
else beg in

(* Set Hi gh = max C k — S(k ,n] < i } us i ng b ina ry search. *)
Low : 0 ;
High : n — 1;
repeat

Center := (Low + High) div 2 ;
if i > S (Center , n] then Low : Center + 1
else High := Center — 1 ;

un t i l Low > H i g h ;
Ls ize : H i g h ;
Rs i ze := n — Lsize — 1 ;
i : I — S (Lslze , n] — 1;
new(Resu l t) ;
w i t h Resul t~ do
begin

lef t := R a n kl nv e r s e (i div B (Rsize] + 1, Ls i ze) ;
/ right : R a n kln v e r s e (i mod B(Rsizel + 1, Rsize) ;

size : n ;
end ;
Rankinverse := R e s u l t ;

end ;
end (* Ranklnverse *) ;

-
-

~~~~~

-‘
-- . ...• T ~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ Y C.. ’ — : - - j~~ PAGE iTh.n bat. £nt.rad)

f I DCDn T ~~~~~~~~~~~~~~~~ DA~~~~ READ INSTRUCT IONS
~~~~~~ i#~~~~um~~n U ~~ I I~~~’~~ ’ ~~~ BEFORE COMPLETING FORM

1 REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER

1926 
_ _ _ _ _ _ _ _ _ _ _

4. TITLE ~wd SubtItl.) 5. TYPE OF REPORT & PERIOD COVERED
Summary Report - no specific

A NOTE ON ENUMERATING BINARY TREES reporting period
6. PERFORMING ORG. REPORT NUMBER

- 
7. AUT I4 OR(a) 8. CONTRA CT OR GRANT NUMBER(.)

Marvin Solomon and Raphael A. Finkel DAAGZ9 -75-C-0024

~~• PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT. PROJECT . TASK

Mathematics Research Center , University of AREA a WORK UNIT NUMBERS

610 Walnut Street Wisconsiry ~ :
Madison , Wisconsin 53706 and Canbinatorics
II. CONTROLL IMG OFFICE NAME AND ADDRESS 12. REPORT DATE j
U. S. Army Research Office February 1979
P.O. Box 12211 13. NUMBEROF PAGES

Research Triangle Park , North Carolina 27709 9
14. MONITORING ~GENCY NAME & ADDRESS(i V dilf. r..i t horn Contr olling Oliáca) IS. SECURITY CLASS. (of tAia ,.pot ()

UNCLASSIFIED
ISa. DECLASSIFICATION/DOWNGRA OING

SCHEDULE

16. DISTRIBUTION STATEMENT (of Oil. R.port)

Approv ed for public release; distribution unlimited.

Si. DISTRIBUTION STATEMENT (of A. .b.troct ,S.rad Sn hock 20, II dill.rwi born R.p o,t)

IS. SUPPLEMENTARY NOTES

1$. KEY WORDS (Contlnu. oii ,.v.r.. .id. If n.c... y ed Id.nVify by block n~~tb r)

binary trees, permutations, generators, enumeration , combinatorics,
stack—sortable permutations

• 

~~~~~ 
re c~ t ’

20. ABST RACT (Cont Inua on r~ •r•• .ld. IS n.c~LJ~aae, wE SdanSlIy by block numb.,)

Gary Knott has presented al~ orithnIs~ for computing a bijection between the
set of binary trees on n nodes and an initial segment of the positive integers
-Rot ern and Varol—presented a more complicated algorithm; that computes a different
bijection , claiming that their algorithm is more efficient and has advantages if

¼ - a sequence of severa).~ consecutive trees is reqI4red.,..~We pre~sent a mc lification ‘~~
of Knott!~s a1gorithm~that is simpler than ,~~n.~t -’-e2 aiad as efficient as ~ot~em—a1~& ‘ ‘

.
~~ I .

War~~~~.~~We-~.lso give,~ new linear-time algorithm for transforming a tree into
.~ts succ6~sor in the r.,atural ordering of binary trees.

DD 1~ ,,~ 73 1473 ECITION OF I NOV 65 IS OBSOLETE UNCLASSI F~~~~~~~~’
SECURITY CLASSIFICATION OF THIS PAGE (Sliw Data Entsr .d))

~ •
-

~~ . . - C
-~~~~ ~ pre~~~~~r r

~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
-
: -

_~~~~
;;
